Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows
نویسندگان
چکیده
In this work, we develop a method for learning interpretable, thermodynamically stable and Galilean invariant partial differential equations (PDEs) based on the Conservation-dissipation Formalism of irreversible thermodynamics. As governing non-equilibrium flows in one dimension, learned PDEs are parameterized by fully-connected neural networks satisfy conservation-dissipation principle automatically. particular, they hyperbolic balance laws invariant. The training data generated from kinetic model with smooth initial data. Numerical results indicate that can achieve good accuracy wide range Knudsen numbers. Remarkably, dynamics give satisfactory randomly sampled discontinuous Sod's shock tube problem although it is trained only
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Invariant Manifolds for Stochastic Partial Differential Equations
Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...
متن کاملInvariant manifolds for random and stochastic partial differential equations
Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. Under a nonuniform hyperbolicity or a nonuniform exponential dichotomy condition, the existence of random pseudostable and pseudo-unstable manifolds for a class of random partial differential equations and stochastic partial differential equations is shown. Unlike the invarian...
متن کاملInvariant Manifold Reduction and Bifurcation for Stochastic Partial Differential Equations
Stochastic partial differential equations arise as mathematical models of complex multiscale systems under random influences. Invariant manifolds often provide geometric structure for understanding stochastic dynamics. In this paper, a random invariant manifold reduction principle is proved for a class of stochastic partial differential equations. The dynamical behavior is shown to be described...
متن کاملLearning Partial Differential Equations for Computer Vision ∗
Partial differential equations (PDEs) have been successful for solving many problems in computer vision. However, the existing PDEs are all crafted by people with skill, based on some limited and intuitive considerations. As a result, the designed PDEs may not be able to handle complex situations in real applications. Moreover, human intuition may not apply if the vision task is hard to describ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Non-Equilibrium Thermodynamics
سال: 2021
ISSN: ['0340-0204', '1437-4358']
DOI: https://doi.org/10.1515/jnet-2021-0008